Documentation>Enterprise Integration
Advanced LevelPremium Feature

Enterprise Integration

Connect Google Ads Scripts with external APIs, CRM systems, data warehouses, and enterprise data sources for unified marketing automation.

90 minutes
Premium Enterprise Features

Data Integration

  • CRM data synchronization (Salesforce, HubSpot)
  • Data warehouse connections (BigQuery, Snowflake)
  • Custom API integrations
  • Real-time inventory feeds

Enterprise Security

  • SSO integration (SAML, OAuth)
  • Role-based access control
  • Audit logging and compliance
  • Data encryption at rest
Data Sources
  • CRM systems integration
  • E-commerce platforms
  • Analytics platforms
  • Custom databases
Cloud Services
  • AWS/Azure/GCP integration
  • Serverless functions
  • Data pipelines
  • Real-time processing
Automation
  • Workflow orchestration
  • Event-driven triggers
  • Multi-system coordination
  • Notification systems
CRM Integration Example
// Salesforce CRM integration for lead quality optimization
function optimizeCampaignsWithCRMData() {
  Logger.log("=== CRM-Driven Campaign Optimization ===");
  
  // Fetch lead quality data from CRM API
  const crmData = fetchSalesforceLeadData();
  Logger.log(`Retrieved data for ${Object.keys(crmData).length} campaigns from CRM`);
  
  const campaigns = AdsApp.campaigns()
    .withCondition('Status = ENABLED')
    .withCondition('Cost > 500 DURING LAST_30_DAYS')
    .get();
  
  let optimized = 0;
  
  while (campaigns.hasNext()) {
    const campaign = campaigns.next();
    const campaignName = campaign.getName();
    
    // Match campaign with CRM data
    const leadData = crmData[campaignName];
    if (!leadData) {
      Logger.log(`No CRM data found for: ${campaignName}`);
      continue;
    }
    
    // Calculate lead quality metrics
    const leadScore = calculateLeadQuality(leadData);
    const conversionRate = leadData.closedWon / leadData.totalLeads;
    const avgDealValue = leadData.totalRevenue / leadData.closedWon;
    
    Logger.log(`${campaignName}: Score=${leadScore}, CVR=${(conversionRate*100).toFixed(1)}%, AOV=€${avgDealValue.toFixed(0)}`);
    
    // Adjust budget based on lead quality
    const currentBudget = campaign.getBudget();
    let budgetMultiplier = 1.0;
    
    if (leadScore >= 80 && conversionRate > 0.15) {
      budgetMultiplier = 1.3; // Increase high-quality campaigns
    } else if (leadScore >= 60 && conversionRate > 0.10) {
      budgetMultiplier = 1.1; // Slight increase for good campaigns
    } else if (leadScore < 40 || conversionRate < 0.05) {
      budgetMultiplier = 0.7; // Decrease poor-quality campaigns
    }
    
    const newBudget = Math.round(currentBudget * budgetMultiplier);
    
    if (newBudget !== currentBudget) {
      campaign.setBudget(newBudget);
      optimized++;
      Logger.log(`Updated budget: €${currentBudget} → €${newBudget} (Quality: ${leadScore}/100)`);
      
      // Update CRM with optimization status
      updateSalesforceRecord(campaignName, {
        lastOptimized: new Date().toISOString(),
        budgetAdjustment: budgetMultiplier,
        leadQualityScore: leadScore
      });
    }
  }
  
  Logger.log(`=== Optimization Complete: ${optimized} campaigns updated ===`);
}

function fetchSalesforceLeadData() {
  const SF_API_ENDPOINT = PropertiesService.getScriptProperties().getProperty('SF_API_URL');
  const SF_ACCESS_TOKEN = PropertiesService.getScriptProperties().getProperty('SF_ACCESS_TOKEN');
  
  const response = UrlFetchApp.fetch(SF_API_ENDPOINT + '/leads/campaign-summary', {
    method: 'GET',
    headers: {
      'Authorization': 'Bearer ' + SF_ACCESS_TOKEN,
      'Content-Type': 'application/json'
    }
  });
  
  if (response.getResponseCode() !== 200) {
    throw new Error(`CRM API Error: ${response.getResponseCode()}`);
  }
  
  return JSON.parse(response.getContentText());
}

function calculateLeadQuality(leadData) {
  // Multi-factor lead quality scoring
  const conversionScore = Math.min(leadData.closedWon / leadData.totalLeads * 100, 40);
  const valueScore = Math.min(leadData.totalRevenue / leadData.totalLeads / 100, 30);
  const velocityScore = Math.min(30 / leadData.avgSalesCycle * 20, 20);
  const engagementScore = Math.min(leadData.emailOpens / leadData.totalLeads * 10, 10);
  
  return Math.round(conversionScore + valueScore + velocityScore + engagementScore);
}

This example shows how to integrate Salesforce CRM data to optimize Google Ads campaigns based on actual lead quality and conversion outcomes.

🔑 Integration Benefits

  • • Budget allocation based on actual lead quality, not just Google Ads metrics
  • • Real-time optimization using CRM conversion data
  • • Closed-loop attribution from ad click to final sale
  • • Automatic campaign scaling based on sales team capacity
Data Warehouse Integration
// BigQuery data warehouse integration for advanced attribution
function optimizeWithDataWarehouseInsights() {
  Logger.log("=== Data Warehouse Attribution Analysis ===");
  
  // Query advanced attribution data from BigQuery
  const attributionData = queryBigQueryAttribution();
  
  const campaigns = AdsApp.campaigns()
    .withCondition('Status = ENABLED')
    .get();
  
  while (campaigns.hasNext()) {
    const campaign = campaigns.next();
    const campaignId = campaign.getId();
    
    const attribution = attributionData[campaignId];
    if (!attribution) continue;
    
    // Calculate true ROAS including offline conversions
    const trueROAS = (attribution.onlineRevenue + attribution.offlineRevenue) / attribution.adSpend;
    const crossChannelContribution = attribution.assistedConversions / attribution.totalConversions;
    
    Logger.log(`${campaign.getName()}: True ROAS=${trueROAS.toFixed(2)}, Cross-channel=${(crossChannelContribution*100).toFixed(1)}%`);
    
    // Adjust bidding strategy based on complete attribution picture
    const keywords = campaign.keywords()
      .withCondition('Status = ENABLED')
      .get();
    
    while (keywords.hasNext()) {
      const keyword = keywords.next();
      const currentBid = keyword.getMaxCpc();
      
      // Increase bids for keywords with high cross-channel value
      let bidMultiplier = 1.0;
      
      if (trueROAS > 4.0 && crossChannelContribution > 0.3) {
        bidMultiplier = 1.25; // Strong cross-channel performance
      } else if (trueROAS > 3.0 && crossChannelContribution > 0.2) {
        bidMultiplier = 1.1; // Good assisted conversions
      } else if (trueROAS < 2.0) {
        bidMultiplier = 0.85; // Underperforming even with attribution
      }
      
      if (bidMultiplier !== 1.0) {
        const newBid = currentBid * bidMultiplier;
        keyword.setMaxCpc(newBid);
        Logger.log(`Bid adjusted: ${keyword.getText()} €${currentBid.toFixed(2)} → €${newBid.toFixed(2)}`);
      }
    }
  }
}

function queryBigQueryAttribution() {
  const BQ_PROJECT_ID = PropertiesService.getScriptProperties().getProperty('BQ_PROJECT_ID');
  const BQ_DATASET = PropertiesService.getScriptProperties().getProperty('BQ_DATASET');
  
  // BigQuery SQL for cross-channel attribution analysis
  const query = `
    SELECT 
      campaign_id,
      SUM(online_revenue) as onlineRevenue,
      SUM(offline_revenue) as offlineRevenue,
      SUM(ad_spend) as adSpend,
      SUM(assisted_conversions) as assistedConversions,
      SUM(total_conversions) as totalConversions
    FROM `${BQ_PROJECT_ID}.${BQ_DATASET}.attribution_model`
    WHERE date >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)
    GROUP BY campaign_id
  `;
  
  // Execute BigQuery request (simplified - actual implementation would use BigQuery API)
  const response = UrlFetchApp.fetch(`https://bigquery.googleapis.com/bigquery/v2/projects/${BQ_PROJECT_ID}/queries`, {
    method: 'POST',
    headers: {
      'Authorization': 'Bearer ' + getGCPAccessToken(),
      'Content-Type': 'application/json'
    },
    payload: JSON.stringify({
      query: query,
      useLegacySql: false
    })
  });
  
  const result = JSON.parse(response.getContentText());
  
  // Transform results into lookup object
  const attributionMap = {};
  result.rows.forEach(row => {
    attributionMap[row.f[0].v] = {
      onlineRevenue: parseFloat(row.f[1].v),
      offlineRevenue: parseFloat(row.f[2].v),
      adSpend: parseFloat(row.f[3].v),
      assistedConversions: parseInt(row.f[4].v),
      totalConversions: parseInt(row.f[5].v)
    };
  });
  
  return attributionMap;
}

📊 Advanced Attribution

  • • Cross-channel impact measurement
  • • Offline conversion tracking
  • • Customer lifetime value attribution
  • • Multi-touch attribution modeling

🏢 Enterprise Scale

  • • Petabyte-scale data processing
  • • Real-time streaming analytics
  • • Machine learning integration
  • • Custom dashboard creation
Implementation Checklist

Technical Setup

Business Integration